CFPX3000

rakon

A range of European Space Components Coordination (ESCC) approved crystals. For use in space applications.

Rakon has had a range of quartz crystal units approved to the requirements of ESCC, as defined in the ESCC generic specification for 30 years. Rakon can therefore provide customers with a source of released quartz crystal units, suitable for use in any ESA project. New type variants can be raised to cover specific customer applications providing the requirement is within the scope of the ESCC detail specifications. The applicable generic specification is ESCC 3501. The applicable detailed specifications (concerning Rakon approval) are: CFPX3750: 3501/001, 3501/008, 3501/011, 3501/012, 3501/018 CFPX3758: 3501/002, 3501/009, 3501/019.

Product description

These crystals are available in two types of holders: T807 cold welded, frequency range 14MHz to 140MHz and T1507 cold welded, frequency range 3MHz to 50MHz.

Applications

- Other
- Satellite Communication
- Communications
- Guidance
- Navigation

Features

- All processing and testing is performed in accordance with an ESCC approved Process Identification Document (PID)
- Fully approved to the requirements of ESCC system
- Lot acceptance testing (LAT) is performed to the level specified by the customer
- Variants tailored to specific customer requirements

Specifications

1.0 SPECIFICATION REFERENCES

LIHE	Parameter	rest condition
1.1	Model description	CFPX3000
1.2	RoHS compliant	Yes
1.3	Package sizes available	10.7mm x 8.8mm (CFPX3750)
1.4	Package sizes available	15.75mm x 6.8mm (CFPX3758)
1.5	Package sizes available	22.0mm x 11.8mm (Non ESCC)
2.0	FREQUENCY RANGE	

Line	Parameter	Test Condition	Value	Unit
2.1	Frequency range	CFPX3750 in fundamental, 3rd overtone and 5th overtone mode	14 to 140	MHz
2.2	Frequency range	CFPX3758 in fundamental, 3rd overtone and 5th overtone mode	3 to 50	MHz
2.3	Frequency range	Non ESCC. AT-Cut. CNES approved	2 to 50	MHz

2.4	Frequency stability over temperature	Customer specified (see customer order form)
2.5	Temperature range	Customer specified (see customer order form)
2.6	Load sensitivity	Customer specified (see customer order form)
2.7	Long term stability	Customer specified (see customer order form)

3.0 ENVIRONMENTAL

Line	Parameter	Test Condition
3.1	Storage temperature	Customer specified (see customer order form)
3.2	Final production test	CFPT3000 (see final production test flow diagram)
	flow	

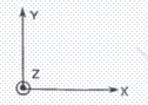
4.0 MARKING

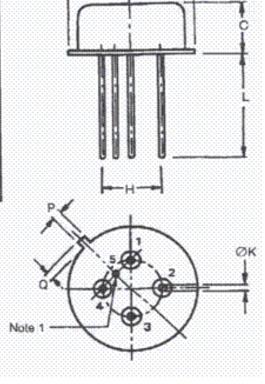
Line	Parameter	Test Condition
4.1	Type	Engraved
4.0		DALCON

4.2 Line 1 RAKON and manufacturing identification

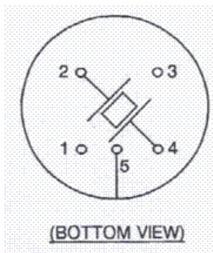
5.0 MANUFACTURING INFORMATION

Line	Parameter	Test Condition
5.1	Reflow shift	Hand soldering

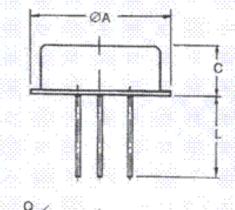

5.2 Packaging description As per customised requirements

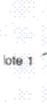

T1507 PHYSICAL DIMENSIONS

SYMBOL	MILLIM	ETRES	
	MIN.	MAX.	REMARKS
ØA.		15.75	
С		6.80	
Н	6.90	7.40	Pitch 7.16mm
ØK	0.40	0.48	
	12.70		
Р		0.90	Note 2
Q		0.95	Note 2


NOTES

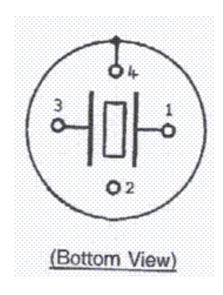
- 1. Lead No. 5 is grounded to case.
- 2. The tag's position or presence is optional.



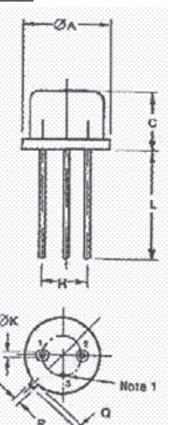

FUNCTIONAL DIAGRAM

T2111 PHYSICAL DIMENSIONS

Symbol	Millin	etres		
Symbol	Min,	Max.	Remarks	
ØA		22.00		
С		11,60		
H	9.29	9.77	Pitch 9.52mm	
ØK	0.40	0.48		
	12.70			
Р		0.90	Note 2	
Q		0.95	Note 2	

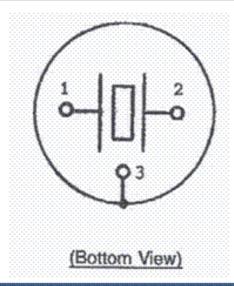


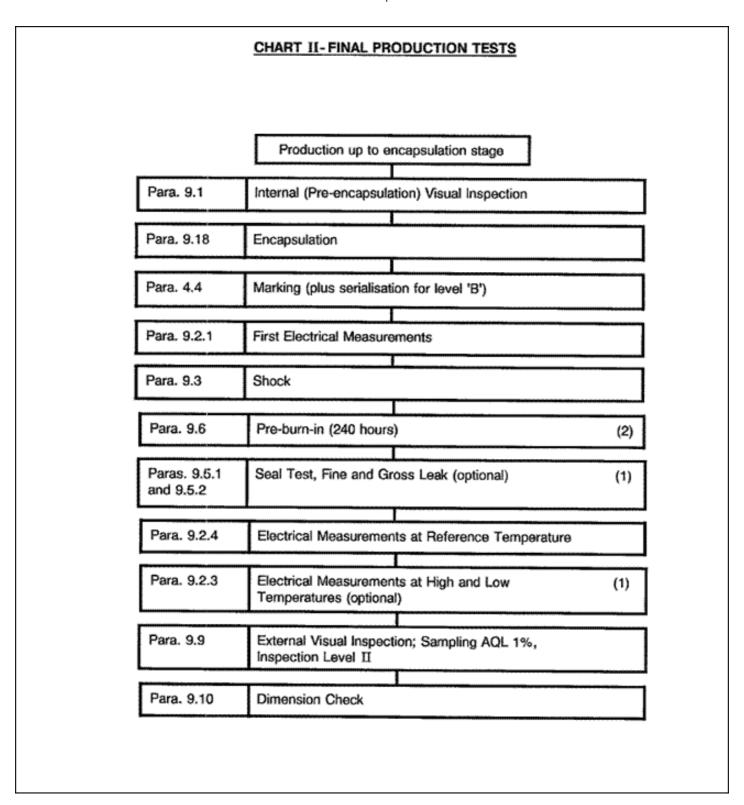
Note 2: The tag's position or presence is optional


Note 3: Pin 2 not connected

FUNCTIONAL DIAGRAM

T807 PHYSICAL DIMENSIONS


C b.a.t	Millim			
Symbol	Min	Max	Remarks	
ØA	-	10 70	-	
С		6 80		
Н	4 83	5 33	Pitch 5 08mm	
ØK	0 41	0 48	-	
L	12 70		-	
Р		0.90	Note 2	
Q		0.90	Note 2	



Note 1: Pin 3 is grounded to case

Note 2: The tag's position or presence is optional

FUNCTIONAL DIAGRAM

CHART III - BURN-IN AND ELECTRICAL MEASUREMENTS Testing Levels В С Para. 9.2.2 Parameter Drift Value, Initial Measurements х Para. 7.1.1 Burn-in 240 hours (Level 'B') х х 168 hours (Level 'C') Para. 9.2.2 Parameter Drift Value, Final Measurements Para. 9.2.4 Electrical Measurements at Reference (1)х Temperature Para. 9.2.3 Electrical Measurements at High and Low х Temperatures Para. 9.11 Radiographic Inspection (2)(3)(4)Paras. 9.5.1 Seal Test, Fine and Gross Leak (3)х and 9.5.2 Para. 9.9 External Visual Inspection х х Para. 7.4 Check for Lot Failure х

NOTES

- The measurements of parameters for the purpose of drift value measurements need not be repeated for electrical measurements at reference temperature.
- Radiographic Inspection may be performed at any point during the test sequence shown in this Chart.
- Radiographic Inspection and Seal Test rejects not to be counted for lot failure.
- Unless otherwise specified in the Detail Specification.

ESCC DETAIL SPECIFICATION N° Table 1(a) TYPE VARIANT DETAIL INFORMATION

N°	Characteristic	Symbol	Lir	mit	Unit	Remarks
	characteristic	3,111001	Min.	Мах.		Kellidiks
1	Holdertype					
2	Resonance Frequency	f _I or f _L			MHz	
3	Reference Temperature	То			°C	
4	Overtone Order	-				
5	Load Capacitance	વ			pF	
6	Rated Drive Level	Po			m₩	
7	Frequency Adjustment Tolerance	<u>∆F</u> F			10 ⁻⁶	At To °C
8	Resonance Resistance	R _I or R _L			Ω	At To °C
9	Frequency Variation with temperature over Top.	R _I or R _L ΔF F				From frequency measured at To °C
10	Resistance Variation with temperature over T _{op}	AR R			% Ω	From resistance measured at To °C
11	Operating Temperature Range	T _{op}			°C	
12	Frequency variation with Drive Level	ΔF F			10 ⁻⁶	From P _{s1} =.005mW to P _{s2} =.25mW
13	Resistance variation with Drive Level	<u>ΔR</u> R			%	From P_{s1} = .005mW to P_{s2} = .25mW
14	Motional Inductance	L ₁			mH	
15	Motional Capacitance	c ₁			pF	
16	Static Capacitance	c _o			pF	
17	Q Factor	Q			-	
18	Ration of unwanted: Response Resistance to Resonance Resistance or Response Impedance to Resonance Resistance	Rp/R or IZp/R				In the frequency range : f - KHz to f + KHz
18*	Ageing	Δf/f0			10-6	To be specified : per year/ over lifetime
18b **	Ageing on test oscillators (if needed)					To be specified : per year/ over lifetime
19	Terminal length	L			mm	
20	Storage Temperature Range	T _{sto}			°C	
21	Intended Application					

- ullet we guarantee \pm 3ppm over 20 years after crystal ageing 500 hours
- ullet ** we guarantee \pm 1ppm over 20 years after crystal ageing 1000 HOURS on oscillators